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Introduction

In recent years several methods have been introduced for esti-
mating power spectra with considerably greater resolution than that
provided by the conventional periodogram or the Blackman-Tukey windowed
Fourier transform. Included among such techniques are maximum entropy
spectral analysis (MEASA) introduced by Burg (1967), autoregressive model
(AR) spectral estimation intreduced by Parzen (1968), and the method of
maximum likelihood as demonstrated by Capon (1969). Other methods offer-
ing high resolution, which utilize the Fourier transform, are described
by Gerchburg (1974) and Papoulis (1975). And more recently another

spectral estimator has been introduced by Gray (1977).

While none of these spectral estimators have been thoroughly in-
vestigated, there have been a few comparative examinations of some of the
techniques conducted by Lacoss (1971), Ulrych and Bishop (1975), and Nuttall .i
(1976). Of the comparisons investigated, in general, superior tresults are
achieved using the MESA method and the Burg technique (Burg, 1968) for es~
timating filter coefficients. The results are dramatic, and suggest that
investigations of MESA and other high resolution techniques be continued.
Because of the high resolution and stability achieved with MESA in such
initial investigations, these same properties are investigated further in
this report where MESA is applied to the analysis of simulated, multi-

channel, spatial, phased-array data.
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In the initial paper by Burg (1967), where the principle of maxi~
mum entropy spectral analysis is first suggested, the prediction error
filter coefficients (which maximize the entropy) are specified with know-
ledge of the autocorrelation coefficients. However, in a second MESA
paper, Burg (1968) defined the prediction error filter coefficients as a
function of a set of uniformly spaced data samples representative of the
function of interest. In addition, Burg simplified the method for obtain-
ing the filter coefficients with use of Levinson's recursion equations,
and also noted in the second paper that the mean squared prediction errors
may be minimized in both the forward and backward directions. These sugges-
tions served to greatly facilitate the implementation of MESA and to signi-
ficantly enhance the MESA properties. Taken together, the improvements
suggested by Burg (1968) are often referred to as the "Burg technique."

The concept of estimating power spectra by maximizing entropy appears
unique in the history of science, yet the resultant expression for power
spectra is identical to the representation of the all pole method or auto-
regressive model (AR) introduced by Parzen (1968). In fact, van den Bos
(1971) and Kaveh and Cooper (1976) have noted that MESA, as outlined by
Burg (1967), is equivalent to the AR method as described by Parzen. There-
fore, it is of consequence to note that the different spectral estimates
sometimes predicted with the two spectral estimation methods are not due to
inherent model dififerences, But rather, are due to the different methods
used for evaluating the corresponding filter coefficients. With this reali-
zation, Ulrych and Bishop (1975) conducted a comparative anlalysis of the
Burg and Yule~Walker (Yule, 1927; Walker, 1931) techniques for evaluating

MESA and AR filter coefficients. In a comparison of spectral estimation of

T —




harmonic components, Ulrych and Bishop showed that the MESA-Burg technique
provided significantly greater resolution than did the AR-Yule-Walker
technique. Ulrych and Bishop noted that the resolution differences are
not surprising when it is realized that the Yule-Walker has assumed a

zero extension of the data samples; whereas the Burg technique contains
no assumptions concerning the non-sampled data field.

Since the MESA and AR methods are most significant when processing
short data sets, it is natural to utilize such methods for processing data
collected with multi-element electromagnetic antennas or acoustical arrays.
For with use of such methods it may well be possible to achieve high re-
solution using unusually short antenna array. Consequently, in this re-
port, the resolution property of the MESA-Burg technique is examined as a
function of input signal-to-noise (S/N) ratios, number of antenna elements,
numbers of signals, incident signal angle, relative signal amplitudes, and

relative signal phase.
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The maximum entropy power spectra (MESA), which was introduced
by Burg (1967), has been derived by Parzen (1969) using statistical
methods, and by van den Bos (1971) using an all pole model representation.
In order to further the understanding and acceptance of MESA, another
derivation suggested by Blizard (1977) is presented based upon discrete
convolution filtering and minimization of the mean squared error.

Consider the one step discrete convolution prediction filter des-

cribed by Levinson (1947) as follows:

N
X = Z a X o
t = n t-n 1)

where X, is the prediction at time t of the function X which is sampled
at time intervals, nAt, and the N prediction coefficients are given by

ajs 8y, «e. age The error of the one step prediction is € given as

follows:

(i R
t t t
N

Et = xt _2 an xt-n (2)
n=1
The filtering and error analysis represented by Eqs. (1) and (2) is

illustrated in Fig. (1) where filter coefficients a_ are multiplied by

values of X, sampled at time intervals of n(At), and resultant multiplica-

The predicted signal X,

tions are summed to obtain the prediction X, -
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and the actual signal x  are subsequently substracted to obtain the

prediction error et.

For convenience the prediction error filter y is introduced as

follows:
N
S Ty W, By (3)
n=0
where in comparing Eq. (2) and (3), it is observed that %
!
Yo =i e O SR 20 i
I

Equation (3) is transformed to frequency space with the Fourier transform ;
to obtain the following equation:

Gl e ? iwn(At) :
SROHT D i () %

where it is noted that the Fourier transform of a function delayed n(At)

units is the exponential

eiwn(At)

multiplied by the transformed function. The power spectra density function
P(w) is defined as follows:
2
P(w) =X (w)/W

where W is the bandwidth defined by the sampling interval At,

i,
W = "(ar)

If the signal distribution function X(w) is given by Eq. (4), the power

spectra density function becomes as follows:

e
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where the error power E;(w) is represented by PN. A requirement that

the spectral error power g;(w) be a minimum results in P being inde-

N

pendent of frequency as follows:

2
ag(w)y _ ¢
dw

constant (7

2
(,
EN.u)

Py

It follows that if PN is a constant then the prediction error filter y

constant

is a whitening filter, znd P, is also the mean of the total squared error

N
as follows:

2
PN = EN(w)
1p.2
e W [F’N(“’)w] (8)

The powdr spectra density function P(w) given by Eq. (6) is the same MESA
equation introduced by Burg (1967) and later derived with detailed steps
by Barnard (1975).

The power spectra density (Eq. 6) may also be expressed as a wave-

number power spectra density as follows:

P (k) PN/kmax
N 1kn (Ax) 2 9
143 elkn(dx
n=1
—-6-
‘.’!‘"“" e LS v - > " AN - _ - s
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where the time (t) and frequency (f) variables have been transformed to
space and wavenumber variables using the following relations:

w = ke, At = Ax/c

for k (2m/)) cos B

A = signal wavelength

® = signal angle of incidence
¢ = signal velocity
i
k wavenumber bandwidth = 2n/)
max =

Utilization of the MESA power spectra equation (Eqs. 6 and 9) re-
quires that the prediction error coefficients Yn and the mean error power
PN be known. These unknown parameters may be specified by minimizing the

average time dependent prediction error power, ei. The resulting N + 1

equations, which are derived in Appendix A, are presented in a matrix ;

formulation as follows:

- r -~ - m—
ro rl r2 r3 ao rN 1 Yl PN
| .
r, T T, " N-1| 0 0
r2 rl I'o I‘l o I'N_z 'Y3 0
, : (10) 3
3
T T U R Y 0 )
oo . 0-‘ _ N i L J >

where it is known that Yl = 1, and it is assumed that the autocorrelation

coefficients r, (with lag iAt) are known for N lags.
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The autocorrelation coefficients have the following definition:

£ lim 1 s X
fh % Mo T feM K ken (11

But for a finite data set, the autocorrelation coefficients may be com-
puted by approximating Eq. (1l) with a finite summation over M data
samples.

For large sized filters (N large) solution of the N+1 equations
given by Eq. (10) becomes very tedious. Fortunately, Burg (1968) de-
monstrated a more expeditious method for specifying the unknown predic-
tion error coefficients which appear in Eqs. (6) and (9). Burg noted

that the unknown parameters P _ and YnN may be evaluated with repeated

N

use of Levinson's recursion relations,

o N+1,2
Peer = Py [1 O w1 ]
N1 _ N, N1 _N
Yn Yn 7 YN+l YN-n+2
= 2
for Pl = ro ]
y?+l =1land N >1

and with knowledge of ygii, which is shown in Appendix B to have the

following representation.

N-1 N N
N N e
N+

MEN-]. N

N. 2 2
k=1 [(Bk) + (ak+N) ]

.gtfﬁiﬂﬂauT"“ o
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where the forward prediction error is az

error is Bi. The three equations, Eq. (12), (13), and (14), comprise

and the backward prediction

the Burg technique as originally demonstrated by Burg (1968) and later
generalized in detail by Anderson (1974) and Barnard (1975).

The remainder of this report is concerned with the properties
exhibited by the MESA wavenumber power spectra equation (Eq. 9) when

evaluated using the Burg technique given by Eqs. 12-14.

Signal Simulation

Resolution properties of the MESA-Burg technique are examined :

using simulated antenna data. Input signals to a linear (line), multi-

element, phased-array antenna are assumed to be plane waves mixed with

white, Guassian noise. The multi-channel signals are pre-processed with
narrow band filtering and channel delays which serve to '"direct" (or
steer) the antenna in the direction of the incident plane wave signal. 5
The pre-processing methods are illustrated in Fig. (2) where the nth
channel is depicted as delayed (n-1) At seconds for

At = Ax sin (8) / ¢
where ¢ is the velocity of the incident signal, Ax is the antenna element
spacing and 6 is the look angle of the steered array measured relative

to the normal to the array.

SR S

The incident signal xn(e) to the nth antenna element is represented

i g

as follows:

x_(8) = A cos [Qn(e) + Qn] (15) i

f
. e
Mm:"-'fn":m
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where A is the signal amplitude, un(e) is the signal total phase, and
Qn is a random number representative of Gaussian noise. The amplitudes
A and Qn are relative, and are determined by a Gaussian distribution

with variance 02 and a specified signal-to-noise ratio as follows:

2
A
- A (18
2 2
Q = e—Qn/Zc (17)

where (S/n) is the input signal-to-noise power ration, 202 is the average
noise power, and 9, is a random number between 0 and 1.0 obtained using
a "white" random number generator.

The signal phase Qn(e) has three components as follows:

2_(8) = 2 [n-l] : [Ax/)\] : [sin (6) - sin (es)]- 6 (18)
where 6 is the array look angle, es is the angle of the incident signal
relative to the normal to the array, ¢ is the incident signal initial
phase with values between 0 and 2m , and A 1is the signal wavelength given
by

X =c/f
For all signals analyzed in this report the ratio (Ax/)A) has the value
0.5; i.e.:

Ax/X = 0.5
In conventional beamforming all N antenna elements are summed such that

the total X (6) is the following summation;

N
X (0) = Z{A cos [Qn(e)] +Qn} (19)

n=1

T e
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and the conventional antenna power pattern is computed in units of

decibels as follows:

2 2
dB = 10 Log [x 0/ X (‘es)] (20)

However the MESA technique requires multi-channel data which is given
by Egs. (15) and (18).

Conventional antenna patterns are compared with MESA patterns
whenever such comparisons are considered worthwhile. It is specifically
noted that the signal-to-noise (S/n) is defined at the antenna element
and is the same for each antenna element. Consequently, the signal-to-

noise ratio does not include the conventional antenna gain factor.
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Optimal Filter Size

The size N (number of filter coefficients) of a MESA filter is
constrained to be one less than the number of data samples M, i.e.
N<M-1
so that at least one data sample, which is not convolved with the filter
coefficients, is available for estimating the prediction error. The
lower bound on N 1is dependent upon the total number of spectral para-
meters, since some minimal number of filter coefficients is required
to accurately represent all spectral component parameters such as ampli-
tude, frequency, and phase. For instance if there are P spectral com-
ponents, all with the same relative phase, then N is constrained as
follows:
2B < N=M-1 (21)
where 2P represents the total number of spectral parameters.

While N is bounded, the actual filter size is optional within the
bounds of Eq. (21). Anderson (1974) and others have noted that the criter-
ia for selecting the- filter size depends upon the intended application or
function of the MESA power spectra. For in using MESA it is observed that
the spectral characteristics of MESA are a function of the filter size.
Both resolution and peak height are improved at the larger filter sizes,
whereas stability and accuracy sometimes are better at the lower f:lter
sizes.

Some criteria for determining the filter size is required if MESA

is to be used in a completely automated manner to determine an unknown

power spectra. One criteria, which is representative of two MESA

=12
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characteristics is the output signal-to-noise power ratio. Both peak
height and resolution are two inter-related properties that are optimal
with maximization of the output signal-to-noise (S/n) power ratio.
King (1977) has noted that maximization of the output (S/n) power ratio
at a spectral peak is a reliable criteria. Another criteria.developed
by Akaike (1970) has been investigated by Ulrych and Bishop (1975) and
found to be only partially satisfactory.

King (1977) noted that the output (S/n) power ratio at a spectral ;
peak wy is given by

(S/n)w = P(wo) (22)

o PN

where the power spectra is evaluated at the spectral peak y,. With

use of the power spectra expression (Eq. 6),

(§) o D (23)

n 2

Wo FN(U)O)

where L . .
2 o 2 : iwon(At)
PN (wg) =W 1+ b Yn e (24)

A maximum (S/n) requires that IN(wo) be a minimum. Therefore, an
Wo

optimal filter size is the filter size (No) that minimizes FN(wo)-

If the maximum (S/n) ratio is a criteria for determining the filter

size, then the MESA properties of accuracy and stability are not optimized,
and remain as inherent MESA characteristics. Both accuracy and stability
(under varying noise fields) have been satisfactory with use of a maximum
(S/n) output. Howcver, when signal relative phase is non-zero, spectral

peaks of the computed power spectra are often instable. Sometimes averaging

5 ™
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of such computed spectra appears to restore the Stability. Examples
of MESA antenna patterns of phase shifted signals are provided in a
subsequent section.

Of course, maximization of the output (S/n) at each spectral
peak requires that the peak locations w, be known. The peak locations
may be determined by solving for the roots of the function i (w) at a

stable and accurate low order filter size.

An example of the value of maximizing the output (S/n)w0 is
given in Fig. (4a)-(4g) where the MESA wavenumber spectra is computed
for a signal located at 0° (broadside to the antenna). The antenna
has 8 elements and the input signal-to-noise ratio is 10 dB per element.
The MESA power spectra are shown computed for all possible filter sizes.

2 <N<7

in fig. (4a) - (4f).

A common problem with MESA, line splitting is noticed to occur
at the large filter sizes 5 < N < 7. At the lower filter sizes 2 < N < 4,
the power spectra having the best resolution and greatest peak height occurs
at the filter size N=4, Fig. (4c). The filter size, N=4, is also the filter
size determined by maximizing the output (S/n)wo ratio, and the optimal
power spectra for N=4 is shown in Fig. (4g). Of the six possible filter
sizes, the power spectra for N=4 is clearly the power spectra with the best
resolution and peak height. Maximization of the output (S/n)m also serves

o
to avoid such problems as line splitting as observed with the example given.
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SECTION III




Analysis

In order to demonstrate some of the MESA characteristics, antenna
patterns are computed using the MESA-Burg technique hereafter referred
to as just the MESA technique. In all MESA examples given, the King
optimal filter is used so that all MESA antenna patterns are optimal in
the sense that the automatically selected filter size allows each spectral
component to have a maximum signal-to-noise (S/n) ratio.

The King optimal filter may also be used to select the optimal
antenna pattern among the many patterns possible to compute in a given
time period, but such a criteria is not used in obtaining the examples
of this report. In order to minimize the number of spectra computed,
antenna patterns exhibited are usually representative patterns, selected
from a computed few and are neither the best nor the worst patterns possible
with the use of MESA in a time varying noise field. 1In other examples as
required, as many as ten patterns are computed and averaged to provide more
representative examples.
Two Signals

Two signals each having (S/n) = 10.0 and separated two degrees are

shown resolved by MESA in Fig. (5a) using a five element antenna having a

total length of two wavelengths (L = 2)). For comparison the antenna
pattern shown in Fig. (5b) is computed for the same two signals and antenna
using conventional phased array summation. As anticipated the conventional
technique, which is computed for a 60 dB (S/n) level, does not resolve the
two signals since the resolution of a two wavelength antenna is only about

22 degrees.
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Three Signals

In another example three signals two degrees apart, each having a
(s/n) = 0.5, are shown well resolved in Fig. (6a) using the MESA techni-
que and a seven element antenna (L = 3)). Again the conventional antenna
pattern shown in Fig. (6b) and computed for the same three signals and
antenna, does not resolve the three signals. Conventional phased array
summation of the seven element antenna has a resolution capability of
only 15 degrees.

The two examples of Figs. (5a) and (6a) quite clearly illustrate
the remarkable resolution capability of maximum entropy.
Single Signal

In order to obtain a better measure of the MESA resolution capability,
a single signal at O degrees (broadside to the antenna) is magnified with an
enlarged angular scale. Three such MESA antenna patterns shown superimposed
in Fig. (7) serve to illustrate the MESA resolution as a function of the .
(S/n) ratio. The beamwidth of each peak is measured at the half power (3 dB)
points on the peaks as an indication of typical MEAS resolution. The measured

beamwidths and corresponding (S/n) ratios are listed as follows:

(ae)
S/n 1ie
(power ratio) (Half power beamwidth)
10 dB .0044 degrees
5 dB .008 degrees
1 dB .20 degrees

The three antenna patterns of Fig. (7) are computed for a 6 element antenna

(L = %A) and are plotted on an abcissa scale ranging from -1 to +1 degrees.

-l16-
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In order to demonstrate the functional relationship of beamwidth
(or resolution) and (S/n) two curves computed for linear arrays having
6 and 24 elements as shown in Fig. (8). The curves are constructed
through points representing half power beamwidths measured on magnified
MESA antenna patterns computed for a range of (S/n) ratios. Also each
curve is representative of only one particular set of noise data identi-
fied by the seed number (IR). The particular IR values indicated on the
curves of Fig. (8) provided the best resolution out of 9 possible IR
values tested (1<IR<9). However, the plotted resolution curves of Fig.
(8) are neither the best nor the worst resolution pessible for a given
array size since only 9 cases of an infinite number of possible cases
were examined.

MESA resolution is in fact highly sensitive to noise data samples
such that other resolution curves, similar to those in Fig. (8) but for a
different set of noise samples, may well be displaced toward higher or
lower resolution values with resolution shifts of an order of magnitude.
Consequently, the curves of Fig. (8) are merely representative curves
without any statistical meaning. Of course such resolution curves should
be constructed by averaging resolution points over some large number of com—
puted MESA antenna patterns for which a o is specified. However, a set of
such meaningful and useful curves do require a considerable amount of com—
puter time.

While the curves of Fig. (8) are not statistically meaningful, they do
suggest that resolution values of the order of 0.1 to .0001 are obtainable

with MESA with relatively short length antennas and reasonable (S/n) ratios.

o g —

B o PPN

Lilde.s

POP=CR o T




S334930 NI NOILNT1I0S3Y Y3MOd -471VH
1-Ol 2-0l ¢-Ol -0l

T

o
°
gl 2/ S |

SIN3W313 9

-y -




S ST s ) S

e

Large Angle Resolution

Apparently the high resolution obtained with MESA in the preceding
examples is also surprisingly maintained with signals having large angles
of incidence to the antenna. In the example shown in Fig. (9) the MESA
antenna pattern is computed for two signals incident to the antenna at
-85 and +85 degrees. The corresponding conventional antenna pattern is
shown superimposed over the MESA pattern in Fig. (9) where both patterns
are computed using a 6 element antenna and a (S/n) of 10 dB. The MESA
pattern is the best of 9 computed patterns for (1< IR<9). At such large

angles of incidence the high resolution and reduced sidelobe levels of

MESA are even more astounding when compared with the corresponding con- It
ventional antenna pattern.
In another example shown in Fig. (10) the same two large angle
signals and two other signals with similar power levels and incident at #
angles of +20 degrees are detected using a 6 element antenna. Again the
MESA and conventional antenna patterns are shown superimposed in Fig. (10).
The example of Fig. (10) illustrates that both high resolution and stability
are maintained at large angles of incidence when other signals are present
at smaller angles.
In comparison with conventional antenna patterns the resolution of
MESA at large angles of incidence is most remarkable since beamwidths of

conventional patterns are known to increase with increasing angle of in-

cidence roughly in proportion to the secant of the angle.
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Multiple Signals

In order to establish the stability of MESA with an increasing
number of signals incident to the antenna, antenna patterns are computed
both with MESA and with conventional phased array summation for combina-
tions of five and ten signals and for linear antenna arrays of 12 and 25
elements respectively. Both MESA and conventional antenna patterns are
: shown superimposed in Fig. (11l)for five signals each having (S/n) = 10 dB
and in Fig.(12)for ten signals each with (S/n) = 1.0 dB. As in all
other MESA and conventional antenna patterns, phase of each antenna
element is varied so as to "steer" or direct the antenna in the direction

of each incident signal, and corresponding antenna patterns are computed

in this manner for each signal,and all patterns are averaged together
to obtain the one resulting pattern displayed. As a result the antenna
patterns in Fig.(ll)are actually five '"steered" patterns averaged
together. , 'E
All antenna patterns are displayed by computing points only for
integer degree points so that each pattern consists of 181 computed
points with points in between linearly extrapolated. Since the signals
displayed in Figs.(11)and(12)all occur at integer angles the peak loca-
tion or angular stability of MESA appears to be quite good in both
figures. Almost every single signal peak is detected where anticipated
with the apparent exception in Fig. (12) of signals located at -60 and
0 degrees. Apparently the -60 degrees signal is detected by MESA to be

somewhere between -60 and -59 degrees, and the 0 degree peak which has

B

noticeable assymetry in Fig. (12) is apparently detected by MESA to be

AL S
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between 0 and +1 degrees. From such observations it is apparent that

MESA suffers some even slight instability in signal peak location when
large numbers of signals are present. Further averaging of MESA antenna
patterns computed for additional time varying noise data sets would likely
improve such slight instabilities in wavenumber accuracy. It should per-
haps be recalled that the MESA antenna patterns of Figs. (11) and (12) are,
like all other MESA patterns, computed using the optimal filter size so
that each exhibited peak has optimal peak height and optimal resolution,
and overall stability is maximized.

Mixed Power Levels

In all MESA antenna patterns exhibited it has been obvious that
estimated peak heights are not well correlated with actual signal power
levels. Peak height estimates with MESA are representative of either
MESA non-linearities or a MESA instability or perhaps a combination of
both. However, experierce has shown that averaging of computed MESA
patterns does tend to somewhat stabilize peak heights as well as improve
the (S/n) characteristics. Instabilities or non-linearities in peak
height estimates may affect the detectability of weak signals especially
when they are accompanied with very strong signals.

In order to test the detectability of a collection of signals having
substantial power level differences, MESA antenna patterns are computed for
four signals, of which three have equal power levels where (S/n) = 0 dB.
The resultant MESA pattern is shown in Fig. (13) computed for an antenna

having 9 elements. The signals which are observed in Fig. (13) at their

«20-
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correct angles of -45, -1, +1, +60 degrees, have the usual amplitude g‘
]

variations. The smallest of the four largest peaks, which is indeed
the weaker signal, is 18 dB below the adjacent stronger signal. In an
average over twenty such MESA antenna patterns (computed using 20 differ- ! a
ent noise data sets), the resultant antenna pattern shown in Fig. (14)
is improved as expected. There is an overall gain in the output (S/n), !
and even some improvement (6 dB) in the relative peak height of the weaker
signal occurring at +1 degrees.

In another example of signals with mixed power levels, a MESA antenna
pattern shown in Fig. (15) is computed for an antenna with 12 elements and
five signals, of which three have (S/n) = 20 dB and two have (S/N) = 0 dB.

However, in the resulting MESA pattern only three of the signals located at

-45, +1 and 60 degrees are obviously detectable in Fig. (15). Of the two
weaker signals located at ~1 and 30 degrees, only the one at -1 degrees
could possibly be considered as a signal candidate. In fact the signal in-
cident at +30 degrees is well into the background noise.

In an average of twenty MESA patterns computed for the same five
signals and the same 12 element antenna, it is observed in Fig. (16) that

there is again considerable overall improverent in (S/n) levels, and also

there is considerable improvement in the relative peak height of the weaker

signal located at +30 degrees. On the other hand there is no apparent im-

i provement in the detectability of the weake:r signal located at -1 degrees.

The examples of Figs. (13~16) are an indication that weak signals

may or may not be detectable with MESA when they occur in the company of

Tay

considerably stronger (20 dB) signals. But it is also evident that pattern
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averaging may enhance the relative peak level and hence the detectability
of such weak signals. Perhaps longer term averaging may be quite effective
with MESA even though such averaging also serves to increase the false
alarm rate. No doubt there is some optimal pattern integration time based

upon an acceptable false alarm rate.

Relative Signal Phase

The effect of relative signal phase shifts is a significant factor
affecting the detection of a collection of interfering signals that may be
incident to an antenna. Unfortunately it is only possible to examine a
few relative phase shift examples. However, two phase shifts of m and
n/4 are perhaps more significant than others due to the possibility that
two interfering signals having a relative phase difference of 7 may totally
or even partially cancel each other. Also there is an apparent instability
with MESA in the detection of phase shifted signals which is most severe
at a phase shift of w/4. Several investigators, Chen and Stegen (1974),
Ulrych and Clayton (1976), and Fougere, Zawalick, and Radoski (1976) have
all noted the MESA phase shift instability. Signals having both phase
shifts are investigated in the following examples.

A MESA antenna pattern is shown in Fig. (17) where five signals
having no phase shifts (all have zero initial phase) are detected with a
12 element linear antenna. The five signals, each having (S/n) = 10 dB,
are all detected with MESA at their correct angles of incidence, -45, -1,
+1, +30, +60 degrees. However, as usual the peak levels are not equal

even though all signals have equal powers.
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For the same set of signals one signal, at +1 degrees is given a

phase shift of m relative to all other signals and the resultant MESA
antenna pattern is shown in Fig. (18), where it is noticed that the two
adjacent signals located at -1 and +1 degrees have greatly reduced peak
levels. The other three signals are apparently not affected by the phase
shifted signal It appears that the two closely adjacent signals having
opposite polarity have effectively canceled one another. Even though the
MESA pattern in Fig. (18) represents an average of ten patterns, the effect
of pattern averaging has not overcome the phase shift interference between
the two adjacent signals. Of course the same effective signal cancellation
is also noticed in conventional antenna patterns.

In another example of the identical collection of signals,where the
one signal at +1 degrees has a relative phase shift of w, but with an
entirely different set of noise data (IR = 7), the computed and averaged
MESA antenna pattern is shown in Fig. (19), where only the signal at +1
degrees with the phase of 7 is reduced beyond recognition. The closely
adjacent signal, and the other widely separat<! - 3nals all having zero
phase, are all readily detectable. While one example, which includes
some pattern averaging, indicates that two nearby signals having a relative
phase of 7 tend to cancel one another, another example has indicated that
one of the signals may be detected. Since other examples not shown have
indicated that one or both of the closely spaced signals is often detectable,
it is concluded that a relative phase shift of n is a problem with MESA
in that such relative phase shifts may reduce the detectable of one or more
signals. However, it is also concluded that long term pattern averaging

does serve to restore some of the loss in peak levels.
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MESA is tested further where the signal located at +30 degrees

is given a phase shift of m/4 relative to all other signals having zero
initial phase. The resultant MESA antenna is shown in Fig. (20) computed
for the same antenna (12 elements) and same (S/n) ratio of 10 dB. All

five signals which are located precisely at the correct angles of inci-

S T e e

dence appear in Fig. (20) to be readily detectable. The signal with the
phase of w/4 is quite evident at the +30 degree angle and is apparently f
not the cause of any instability. As in the two previous MESA patterns |
of Figs. (18-19), the MESA pattern in Fig. (20) represents an average of i1
ten such patterns, since averaging is desirable when instabilities are :
suspected. However, the instability due to a signal phase of m/4, which ;

has been reported by others, is apparently not a source of any instability

in the example of Fig. (20) and, in fact, cannot be a source of peak

splitting since the King optimal filter size is utilized. Since peak

splitting appears to be a factor only at the larger filter sizes, the .
King technique automatically selects the filter size having the best

possible (S/n) ratio at the correct peak location determined by a previous

root determination at some stable lower filter order; and since split peaks

have a very poor value of (S/n) at the correct peak location, such insta-

bilities are avoided with the optimal filter. As a further check, other

(S/n) ratios have been utilized in an examination of the exact same signal

set used in the example of Fig. (20) and as expected the split peak insta-

bility apparently just does not occur for the reason given.

While the two relative phase shifts examined are apparently not a

source of instability in accurately locating signals (determining signal

angles), phase shifts may be responsible for an instability in estimated
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peak levels. In other words signals having initial phases other than
zero may be a factor of contention in the detection of signals analyzed
with MESA. However, pattern averaging is apparently helpful in alleviat-
ing any loss in signal detectability.
Summary

Desirable antenna pattern characteristics include high resolution,
accurate angular prediction, peak detection at low (S/n) levels, and
stability under noisy conditions and multiple target environments. In
this necessarily encompassing and cursory investigation, antenna patterns
computed using MESA have exhibited these desirable properties to a re-

latively high degree of measure.

Resolution with MESA is exceptional even under noisy conditions
and in multiple and mixed target environments. High resolution is main-
tained even at very large angles of incidence. Estimates of signal angle
appear to be quite accurate even under difficult signal conditions, and - |
peak detection with MESA is obviously better than that provided by the
Fourier transform. However, it is perhaps most significant that MESA
exhibits good stability properties with use of the optimal filter size.

Non~-zero signal phase does apparently affect signal levels and
consequently signal detectability in an adverse manner, although averag-
ing over many antenna patterns does help to restore the affected signal }
levels. The problem of peak splitting is apparently avoided although not
corrected with use of an optimal filter order.

It can only be concluded that MESA is a most promising signal pro-

cessing technique as it appears to provide significant improvements over

g{ conventional techniques for processing phased array antenna data.
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While the results of this investigation demonstrate that MESA may be

used to obtain very desirable antenna patterns, MESA characteristics
are not defined in a precise manner. Hopefully,further investigations
will establish MESA characteristics in a more definitive manner.

When new techniques provide significant improvements in certain
characteristics, it is always suspected that other characteristics are
degraded; Of course, usually such suspicions are well founded. However,
the Maximum Entreopy Spectral Analysis technique developed by Burg appears

to have withstood most of the usual criticisms.
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APPENDIX A

Prediction Filter

Consider a signal x(t) with a waveform only over the time
interval (0,T). The waveform may be predicted (or estimated) for
points outside the window (0,T) using the prediction filter in a

convolution with the known signal x(t) as follows:

T
i ;(t) =f a(t) x (¢t - 1) dt (A1)
(o}

~

where x(t) is the predicted signal and a(t) is the impulse response
of the prediction filter.
If the signal has been adequately sampled within the time

interval (o,T) such that

(M-1)
T

At 2 L/2E; < 2f

for a sampling interval At, M data samples, and signal frequency f,

then the discrete convolution may be employed as follows:

N
Xk = E an xk-n’ N <M (A2)
n=1

where the summation is taken over N filter coefficients, N being less
than the number of data samples.

Prediction Error Filter

s D&

An error €, may be defined for the known set of data samples as

follows:

g TN TR
N

M‘.‘v-—m‘&ﬂm

N n=1

- E Yo ¥-n for ™ 1, n=0

n=o

|

!

‘ = - a

% s n"k-n (A3)

s a

= ¥ b
Yo an n 0
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where = is the nth prediction error filter coefficient.

The squared error is expressed as follows:

2 N N

L R (a4)
O n=o

since y 1 there are N remaining unknown prediction error coefficients.

These N coefficients may be determined by minimizing the total mean

squared error EN which is defined as follows:
N
1 2
= —_— € AS
Ex 2N+1 Z k (45
k=-N

The summation is taken over all errors possible to compute in a for-
ward prediction within the data window defined by 2N+1 data samples.

The incorporation of Eq. (A4) into (AS) results in the following
equation:

N N N ;(

l .

EN = 2w 2: E : z ; "n'm ¥k-n"k-m :
k=-N f

-N 0 n=o

N N N
N\
2 z : Yts X X
- 2N+1 2 k-n"k-m (A6)
k=-N
N N
EN - E z rm--n YnYm
=0 n=o

where rnrn represents the data set autocorrelation coefficients.
The prediction error coefficients are defined with minimization

of the total prediction error as follows:

N
~: ‘iﬁy e E "n Tk-n ~ v At
aYk n=0

for k=1, 2, 3, . . «. N
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The resulting N equations with N unknowns are as follows:

k = = wp .

| yorl ero y2r1 + + YNrN-l =0

= + ...+
kw2 Yory B Y NE, YNT N-2= 0 (A8)
k=N

» Y TP TP L L YT, = O

An additional equation which defines E, results for k = 0 when Eq. (A6)

N

is evaluated as follows:
N

EN = v, z : T rn for k = o (A9)

n=o

where it is recalled that Yo 1

Burg (1967) has assumed that the mean squared error power EN’ as

defined by Eq. (AS5) for the time domain, is equivalent to the mean squared

error power PN’ which is given by Eq. (8) for the frequency domain. However,
King (1977) has noted that EN and PN are equivalent only when the predicted
ncise power equals the actual noise power or when the noise power 1: ncglib-

ible. It follows that for high signal-to-ncise conditions, it may be assumed

that

and PN inay be evaluated as follows:

N

- - All
k = o, Pano:ann (All)
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or
-+ =
yoro erl + 72r2 SR AR YNrN PN
If Eq. (Al2) is combined with the set of equations, Eq. (A8), the result~-

ing set of equations may be expressed in matrix formulation as follows:

E (; ¥. £ ¥ 7l FW' T r-P |
‘ G 1 230" K o N (A13)
E
b= 0
b T e Tn-1 i
0

rN rN—l rN—Z rN_3 ...ro YN 0
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APPENDIY B

Rurg (1968) has proposed a method for computing a set of N+l
prediction error filter coefficients as a function of a known set of

N coefficients using the Levinson recursion equation that follows:

k k N+1  N~-k+2 (81)
N+1
where the only unknown in Eq. (Bl) is the last coefficient ¥y of the
N+1
N+1
new set. Burg suggested that the unknown coefficient vy be obtained
N+1

in a least square error analysis that incorporates both the forward and

backward prediction of the kth point as follows:

N N

X = E i (82)
n

n=1

N ~
X ﬂs “n “kin (B3)
k [ o—— =%

=1

where the forward prediction Xk and the backward prediction Xk are
i ; . i : " : N
expressed as discrete convolutions of the prediction filter set a;

(cf size W) with the set of N+l data samplies. Both filters are illus-

trated in Fig. (3).

It follows that corresponding forward and backward prediction

. N N

& errors, denoted by @ and Bk respectively, have the following repre-

. ) %
g sentations.

.p
o o ak & ‘\ k- ‘\K ‘ x

S oo st

: ¢ Dy (B4) fi
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B = X X%
for 1<k<M-N (RS)
N S
6N + N
k Z Yn xk+n

where Y§+l= 1 and Y:= —ag.

Barnard (1975) has noted that the forward and backward prediction

errors are interrelated through the Levinson recursion relations that

follow.
N1 N1 N N
ay = YN+1 Bk-N+ a s (N+1<k<M) (B6)
N+1 N+1 N N .
- s % :
Bj Y1 “j+N Bj » (L<j<M-N) (B7)

The prediction errors may be computed with the Levinson recursion relations,
given by Eqs. (B6) and (B7), in a bootstrap manner that greatly reduces the
number of computations required with use of the matrix formulation given by
Eq. (10).

The total mean squared error may be expressed as the sum of the

forward and backward mean squared errors as follows:
E 2 2
B e at et v " (B8)
2(M-N +{5.
N (M-N) %N By
k=1

for a filter of size N where N < M-1, M = number data samples.
In order to utilize Eqs. (B6) and (B7) as written, the total mean

squared error may be expressed for filter size N+l as follows:

M-N-1

i 2
e | N+1 o [
1™ 20en-1) Z (“k+N+1) (Bk (R9)
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